Tag: DNS

DNS Network

What is TTL and why is it important?

In our article today, we will take a look at the TTL. So, if you want to learn more about its purpose and why it is so important, you are in the right place. 

TTL – What is its main purpose? 

The value that specifies the time period or the number of hops that a data packet is put up to be alive is called time-to-live (TTL). Either across the network or in cache memory. It will be terminated when this timer runs out or the data packet hits its hop limit. Data packets are not all the same; they differ in size and shape, but they all have a unique TTL. The amount of time data packets should decide the time needed to live in a device to perform their missions.

How does it operate?

Massive volumes of packets will be routed around routers if they are not regulated. To get around this, each data packet must have an expiration date or a restriction. This makes it easier to track their progress and figure out how long they’ve been there. Packets also move through network points to get to their destination. As a result, a TTL value is included in each data packet. Only if time or hops are available, do routers receive the packet and forward it to the next network point. If the TTL indicates that no more hops/time is available, routers will stop transferring it.

On the other hand, routers send an ICMP (Internet Control Message Protocol) message. It reports IP errors and points to the packet’s source IP address.

Why is TTL important?

TTL is a critical method for controlling existing data packets and network traffic. Every day, networks get larger and larger. As a result, the volume of data packets passing through them is enormous. Without a means to govern them (expiration date), millions of old packets that served their purpose many years ago may still be floating around, causing confusion.

Time-to-live is an essential tool for determining if data is still valid in situations such as networking and device cache memory, as we previously discussed. Data that has been determined to be no longer useful can be discarded.

TTL also allows you to obtain information about packets, such as the amount of time they spent traveling and the whole route they took. This is critical information in terms of security!

TTL in DNS

TTL (time-to-live) in DNS (Domain Name System) indicates how long a DNS record, such as an A record or an ALIAS record, is valid (in seconds) and how long a nameserver (recursive or secondary DNS server) can store it in its cache memory. The DNS record will be removed when the TTL reaches 0.

The DNS client must ask the recursive DNS server again and wait for it to perform a fresh DNS query to obtain the record in the case of a recursive DNS server. Following that, it will be cached again based on the TTL.

To update its DNS records, a secondary DNS server must check with the primary DNS server again and complete a zone transfer. Otherwise, it will be unable to answer to domain-related questions.

Conclusion

To summarize, the TTL value is a critical component that determines how long data is valid. It will indicate whether the information is current or needs to be updated soon. It facilitates data updating.

DNS DNS records Network

PTR record: Why should you care about it?

PTR record is one of the critical DNS record types that you should know. It is one of the few that warrants special attention. Why, we will see in this article. 

DNS record – what does it mean?

To start, let’s see what precisely the DNS records are. They are nothing more than text instructions. Its primary function is to instruct domain name servers on managing traffic to your domains and subdomains. In addition, the network for websites is the entire Internet. So, a DNS record is a single mapping that connects an IP address to a resource in DNS. They are organized into DNS zones and kept on nameservers.

What is a PTR record?

PTR records, also known as Pointer records, are a DNS record that links an IP address to a domain name. It is proof that the IP address being checked is indeed tied to the domain name and that it is not a hoax. So, it allows you to check and verify that the IP address you’re using belongs to the domain name. Furthermore, it demonstrates that it is not a hoax. Thanks to the Pointer record, verifying distinct pieces or services, such as a mail server, is simple.

Structure

The structure of the PTR record is simple and easy to understand. Here is an example how what it could look like:

  • TYPE: PTR record – It denotes the DNS record type. 
  • Host: 78.159.213.32 – You must provide the host’s IP address in this field. An IPV4 or IPv6 address is possible.
  • POINTS TO: example.com – You can use this field to show the domain name.
  • TTL: 1h – You set the TTL or time-to-live value here.

How to create a PTR record?

It’s simple to set up a DNS Pointer record. So, let’s break it down into steps.

  1. It would be best if you first built a Master Reverse Zone.

In a Master Reverse Zone, the PTR record can exist. However, it’s important to note that it shouldn’t be used in a conventional Master zone. The IP address in the Master Reverse Zone should always be in reverse order. For example, if the IP address is 32.213.159.78., you should enter it as 78.159.213.32. Regardless of whether it’s an IPv4 or IPv6 address, the same rule applies.

  1. The next step is to generate the Pointer record.

When adding the PTR record, you’ll also have to input it backward. You should have a matching A or AAAA record for each Pointer record. As a result, make sure to double-check!

  1. Finally, add the NS records.

NS records pointing to your nameservers should be added to the IP provider. Your Reverse DNS zone is now complete!

Why is it important to use rDNS service?

PTR record vs. A record

When we compare the A and PTR records, we’ll see that they’re polar opposites. This is because the A record links a domain name to an IP address (IPv4). On the other hand, the PTR record is used to resolve an IP address (IPv4 or IPv6) to a domain name.

It’s also worth noting that the A and PTR records are located in separate DNS zones. The A record should be added to a Primary (Master) DNS zone, but the PTR record can only exist in a Master Reverse DNS zone and operate.

Conclusion

By and large, the PTR is a really fundamental DNS record that you have to know. Start using it for your domain to lessen the number of bounce emails. It is not difficult. You could just follow the steps above. Good luck!

DNS DNS records

DKIM record – definition

Once you get into the DNS game, you have to know the tools to play and face every challenge ahead. The DNS has its structure, but it can be adapted to your specific needs. The only way to enjoy the benefits of its flexibility is to play with its different “cards”. Let’s define the DKIM record to know what it has in store for you!

What is the DKIM record?

DKIM record or DomainKeys identified mail is defined as an e-mail security standard created for domains to prove the e-mails sent on their behalf are authentic. To enable it gives certainty about your messages’ trustability to recipient servers. This is not a minor contribution to security in the current times. DKIM also protects messages from being altered while traveling from the sender server to the recipient server. Basically, these important functions are achieved through cryptography.

How does the DKIM record work?

The DKIM technology allows domains to sign outgoing messages using cryptographic authentication. When you enable DKIM, it will work through the use of two cryptographic keys, one private and one public. The private key will sign e-mails when they leave the sender server. The public key is published into the domain’s DNS record to be available for the recipient servers to authenticate the messages’ source and check the integrity of the messages’ body. If the signature gets verified by the recipient server (via the public key), the messages are considered authentic.

Let’s now be a bit more technical. As an administrator of a domain, you have to publish the cryptographic public key using TXT record format. This step is a must for recipients to verify the authenticity of the message’s sender. When the mail server sends an e-mail, DKIM will create a digital signature and attach it to the message’s header. 

At this point, for sure, you may wonder what exactly a digital signature is. Well, it’s a hash value, a unique line of text properly encrypted with the private key, that must remain exclusively in the administrator’s control. Otherwise, security can’t be guaranteed.

DKIM has, as a part of its functionality, multiple algorithms for generating this digital signature. Every detail linked to the signature’s production process is written in the message’s header. Additionally, two cryptographic hashes are included. One is connected to the defined headers and the other to the message’s body.

The sent e-mail travels and arrives at the recipient mail server. This triggers a DNS query to search the public key of the sender domain for verifying the message. The recipient mail server gets it and proceeds to decrypt the digital signature. The hash values can now be compared with the values within the message. A match of these values will define the authentication of the e-mail. Besides, the recipient mail server will confirm that the message was not altered in transit. Therefore, security for the recipient while accepting this e-mail is guaranteed.

Advantages of having a DKIM record

  • It’s easy to configure. An administrator can directly do it.
  • It’s an efficient shield against forged and dangerous e-mails. Through DKIM, you can secure the messages sent from your domain not to be altered and damage recipients and your reputation.
  • It helps to avoid phishing and spoofing.
  • It provides security to your domain’s mail server, and its possibilities can be expanded if you combine it with other DNS records like DMARC.

Conclusion

The DKIM record means security for your domain mail server and for your clients (recipients). It’s by definition a security ace you should have up your sleeve!

DNS DNS records

​TXT record – What is it and why do you need it?

If you are searching for the TXT record, you are probably interested in email security and all the methods of authentication and validation of a domain. So, Let’s not waste any more time and see what the TXT record type is all about!

​What is the TXT record?

The TXT record is a type of DNS resource record and serves to associate data with the domain. The data could be a human-readable text, or it could be different information about servers and networks that could be read by machines only.

Usually, DNS administrators create various TXT records to ensure the proper functionality of the email servers. That way, the emails that are sent could be verified, and their origin could be authenticated.

The TXT records can be hosted as most of the other DNS records inside a Forward DNS zone. You can host multiple TXT records for different purposes, which won’t create problems between them.

You can see the TXT record first mentioned and read more about it in the RFC 1035 by the creator of the DNS – P Mockapetris.

​Why do you need a TXT record?

The current uses of TXT records are the following:

  • Ownership verification. It is one of the easiest ways to prove that you are the owner of a particular domain. Many services ask you to add a TXT record to the domain name. If you are the administrator, you could be able to do it. If you are not, this will be impossible.
  • Sender Policy Framework (SPF). This is a mechanism for verification of the sender and reporting. It could lower the SPAM.
  • DomainKeys Identified Mail (DKIM). This is an encryption method that prevents email spoofing. It uses public and private keys and keeps the keys inside TXT records.
  • Domain-based Message Authentication, Reporting, and Conformance (DMARC). It uses a combination of the previous two, the SPF and DKIM, and creates behavior policies. It boosts security.
  • Zero-configuration networking DNS-based service discovery. It is used for fast network configuration.

​How to check your TXT records?

You can see all the TXT records for a hostname/domain name by performing a DNS lookup.

​On Linux

Open the Terminal and use the dig command to perform a TXT DNS lookup:

dig hostname/domain name TXTs

You need to change “hostname/domain name” with the one you want to see.

​On Windows

Open the Command Prompt and type the following command:

nslookup -type=txt hostname/domain name

​On macOS

Open the Terminal, and use the nslookup command to see the TXT record:

nslookup -type=txt hostname/domain name

​Inside any browser

You can also use any browser, including your mobile phone’s one, and use an online utility for TXT lookup.

You can try Mxtoolbox.

Open it, write the hostname/domain name, and press TXT Lookup.

​Conclusion.

Now you know that the TXT records could hold different information about the domain name. It is mostly a tool for domain authentication, but also it can be used to show that somebody has access to a domain and the right to modify its DNS records. It is often the case that big cloud providers require you to put a TXT record for your domain so that you can use their services with that domain name.

DDoS protection DNS

How can you reduce the risks with DDoS protected DNS?

DDoS protected DNS is an additional beneficial service. Let’s explain a little bit more about it.

DDoS attack – What is it?

The DDoS (Distributed Denial of Service) attack is a cyber-attack that aims to disable your service, network, website. That usually happens by sending a serious amount of traffic until your server goes down, or they exploit the DNS or protocol such as the UDP flaw and triple your website or application.

There are a lot of different DDoS attacks, and oftentimes they bring down even big companies, for instance, Amazon. Therefore, if you don’t have proper protection, you are risking a lot. In addition, in case you are utilizing shared hosting, such an attack on any of your “neighbors” is going to reflect on you too.

What is DDoS protected DNS?

DDoS protected DNS is an additional service that includes several different tools and mechanisms to inspect traffic and prevent DDoS attacks. Cybercriminals organize and initiate DDoS attacks with large amounts of traffic. Their main goal is to make your servers incapable of responding to the queries of your regular users.

What does DDoS protected DNS include?

  • Monitor. Monitor the entire incoming DNS traffic. In case it detects an abnormal pattern, it could take different actions to prevent a potential DDoS attack towards your website. For that reason, acknowledging the traffic is crucial. 
  • Deep analysis of the traffic. The best understanding of the standard patterns of the traffic and use them for comparison. 
  • Filter. Implementing a filter of the incoming traffic depending on whitelisting or blacklisting and different criteria. The prevention can determine and eliminate malicious traffic. 
  • Traffic separation. Comprehend what regular user traffic is and what fake traffic is. 
  • Spread the traffic. In some situations, only a load balancing technique could be enough to distribute the fake traffic. That way, the DNS servers are going to share the load and withstand the attack. 
  • Activate Failovers. If one of your servers goes down, it is going to inform you about the event. In addition, it is going to redirect the traffic to the remaining DNS servers. You won’t need a human operator to accomplish that, and it is going to be performed automatically. 

​Why should you get DDoS protected DNS?

  • Downtime. If you decide to implement DDoS protection, your servers are going to handle a lot more traffic even under a DDoS attack. So, as a result, the downtime is going to be significantly less. Your customers won’t be bothered to reach your application or website. 
  • Easy to manage. Basic DNS knowledge is all you need, and it will be very simple. You just have to set it up, and from there, the monitors and failover tool are able to operate by themselves. Just in cases when the attack is very strong, your IT team and the customer service of the DNS provider together are going to have to fight the DDoS attack. 
  • Great performance. The DNS service provider could give you a better distribution of traffic. Your website or application is going to remain available for your visitors even under attack. That way, the productivity, and performance are excellent.
  • It is more profitable. Downtime could cost a lot. Imagine your services or a website not being available for your customers. You are going to lose a lot of potential purchases and earnings. So, you see that DDoS-protected DNS service is really worth it. 
DNS Network

The Ultimate Guide to DNS Propagation

What does DNS propagation mean?

DNS propagation is a process that includes updating and spreading the new changes and adjustments you create in your Domain Name System (DNS). They have to be distributed across the entire network. 

Why the DNS propagation takes so long?

Managing your online business or administrating a network involves constant changes on the DNS. Some of the possible scenarios are when you have to add a new DNS record, delete or change some other DNS records, also replace IP addresses. Maybe you desire to make some adjustments on the TTL (time-to-live) values, redirect your visitors to a specific subdomain, or add an SSL certificate. These are only for illustration of how many different modifications of your DNS could appear. 

Actually, no matter what changes you desire to make, all of them are going to be stored on your authoritative DNS server. However, the network has many more DNS servers, like recursive DNS servers, positioned in different locations globally. Each one of these servers has to receive the updated data because if that doesn’t happen, they are going to have some difficulties operating properly. All of those DNS servers have a fundamental part of the DNS resolution process.

How does the DNS propagation work?

For several situations, DNS changes are required. Typical cases are when you desire to make some renovation to your website or when you migrate to a new DNS hosting provider. Different circumstances that can need it are redirecting from the primary domain to subdomains or implementing services, such as FTP and email. All of these circumstances incorporate activities, such as creating, editing, or removing DNS records

The administrator is going to make these corrections directly on the authoritative DNS server. Once the modifications are ready and saved inside it, it is time for the DNS propagation process to happen. That requires every DNS server on the network to obtain a copy with the latest DNS records. 

The DNS propagation process is rolling, although that doesn’t mean that it occurs simultaneously for all servers. 

How to check it?

Here you have three options to make a check on the DNS propagation. Decide depending on your operating system (OS).

For Linux and macOS users, here you have the Dig command.

First, open your Terminal, and next write: 

dig domainname.com 

It will trigger a lookup for an A or AAAA record. As a result, you are going to view the IP addresses of your website. If they have changed, DNS propagation is completed. If they haven’t, it will require a little more time.

*Replace with your domain name and TLD instead of the ones in the example.

For Windows 10 users, here you have the Nslookup command.

Open the Command Prompt, and then type: 

nslookup domainname.com

Once again, the lookup result is going to show out if your website’s IP addresses have changed or not.

*Replace with your domain name and TLD instead of the ones in the example.

Online checkers of DNS propagation.

You could use online tools for making DNS lookups to review data associated with your domain name. In addition, you can examine if the DNS modifications you created have been updated. 

DNS DNS records

Top 5 DNS record types for starters

In case you are just starting to manage your DNS, these top 5 DNS record types are fundamental to know. So, let’s explain a little bit more about them.

A record

The A record is also commonly called address record, and it is perhaps the most popular of all DNS record types. Its purpose is to link a domain name to its corresponding IP address (IPV4 address). When a user makes a request for a particular domain name, exactly the A record is needed to show the accurate IP address.

Although it is a very simple DNS record, it is a crucial part of the DNS configuration. Your domain name could not be resolved without this type of DNS record (or AAAA record). Moreover, your users are not going to be directed to the correct location.

SOA record

SOA record is another critical DNS record that symbolizes the start of authority. It holds administrative information about the zone. It is the first DNS record that a DNS zone file includes, plus it establishes the general properties of that zone. It also holds data concerning the zone transfers, such as the refresh rate, the retry rate, and the administrator’s email.

The SOA record serves as a control record with a serial number and shows if there is a new update. Once the Secondary DNS servers detect a change in the number, they are going to update and receive the latest data.

NS record

The NS record is another very basic DNS record. NS stands for the nameserver, and it is similar to an ID card for the nameserver. The NS record describes which name server is accountable for the particular DNS zone. If such a record is not available, the zone won’t be able to work.

MX record

Another piece of the essential DNS record types, the MX record, which comes from Mail Exchanger record. Its purpose is to point the email server accountable for receiving emails for a specific domain name. It contains the domain name pointing to the hostname of the incoming mail server. Note that it has to point to a hostname and not to an IP address.

By establishing multiple MX records with different priorities, you could set a backup in case some failures occur. It is vital for you in order to receive emails properly.

CNAME record

The CNAME record shows an actual, canonical domain name for the domain or subdomain. It is commonly used when we are talking about subdomains. By implementing this DNS record type, you are going to be able to manage and administrate your Domain Name System as easily as possible.

The way to achieve that is by simply adding a CNAME record for each of your subdomains and pointing it to the domain name. As a result, each time you complete any changes or adjustments to your domain, they will occur to your subdomains too. That is going to save you a lot of time!

Related article: PTR record: Why should you care about it?

DNS

Getting started with Dynamic DNS

The administration of a domain or a network is a tough and full-time job. We frequently talk about IP addresses, and they are a good example. Just to administrate them and execute all the tasks related to them can take a lot of time. Therefore, technology has been developed, helpful tools to be in charge of such tasks and to give administrators a breathe.

What’s Dynamic DNS? 

Dynamic DNS (DDNS) is a method that allows you to update a name server automatically and frequently. DDNS can update almost in real-time, IP addresses whenever they change, and their associated A or AAAA records. So your administrator doesn’t have to do it manually!

Yes, IP addresses change constantly. As a common user, for sure, you don’t realize it, but businesses do. Think, for instance, a business that supplies one or more services via the Internet. All those changes represent the risk for its clients not getting access to the service and suffering downtime because they try with an IP address that’s not valid anymore.

If a business uses a consumer Internet provider and what’s to offer a service, it will have a lot of work to do. Work like having a person in charge of monitoring and changing the IP address manually when the Internet service provider (ISP) changes it. 

If you wonder why ISPs make such changes, there’s an explanation. They have a pool of IP addresses, meaning a limited number of them for working. Consider the number of clients they have and that a unique IP address is required for a single device connected to the network. They have to administrate this resource really smartly not to fail while supplying the service to their clients. 

Another choice is to pay for a static IP address, but this is high-cost. Not all businesses can afford it. 

And of course, they can use DDNS that is a more affordable, even free with some providers, and comfortable alternative. Whenever the IP addresses change, their corresponding domains will be fast remapped (DNS) to keep them available for clients.

Dynamic DNS providers. 

If you already feel Dynamic DNS is the solution you were looking for, here you have some quality providers.

ClouDNS

ClouDNS has 34 DNS locations in the world, and easy to install for different OSes and network devices.

It offers a free Dynamic DNS plan that can be a solid starting point for many. But of course, there’s a Premium DNS more robust, and it starts at $2.95 monthly if your needs are bigger. 

Dynu

Dynu provides a free service! 12 nameservers worldwide, intuitive web-based control panel, easy to install, and convenient features. Most DNS records (A, AAAA, MX, CNAME, SRV, SPF, KEY, etc.), locations, wildcard alias, web redirect, offline settings, etc. 

No-IP 

No-IP has a free plan and paid ones. The free plan can feel tight, supporting only some DNS records and allowing only 3 hostnames that you must confirm every 30 days. The paid plans are a different story, with much more features by paying $24.95 or $29.95 yearly.

Top Affordable Premium DNS Hosting providers

Conclusion.

Getting Dynamic DNS can solve you a lot of IP addresses issues. It reduces human errors related to the manual management of this resource. And it’s a much more affordable service than having static IP addresses. Keep your business running by hiring a quality provider and without compromising your budget! 

DNS DNS records

How To Use SPF To Protect Your Domain reputation.

The reputation of your business (domain) is an essential asset you must protect at all costs. It means a lot for your clients: trustability and reliability. These are strong triggers for them to pick you or to choose your competitors.

Crime techniques used on the Internet to cheat users get multiplied, and we must be very aware. In some cases, they use your positive domain reputation to defraud your own clients. 

​What is SPF?

The sender policy framework or SPF is a system for validating the legitimacy of an e-mail server. It’s a helpful and efficient system to avoid spoofing and to enhance e-mail servers’ reliability.

Having SPF, you can authorize the only e-mail servers that can send messages on behalf of your domain. 

​What is an SPF record?

To enable SPF, you have to add an SPF record for your domain name. An SPF record is a DNS record from the TXT DNS type. It holds the necessary information that allows verifying which e-mail servers are truly authorized to send messages from the name of your domain name.

Once the SPF record provides that information, the e-mail server can be verified, validated, or not.

Using the SPF record, specifically its qualifiers and mechanisms, you or your administrator can establish rules, as strict as you decide, to verify. 

DNS SPF mechanisms:

  • “include” allows adding more domains (like example.com to example.net) for sending e-mails from the mail servers of the domain where the SPF record is hosted.
  • “all”, all mechanisms after it are to be ignored.
  • “a”, if you pick A, it means the A or AAAA records have to match with the return path for e-mails to be allowed.
  • “ptr”, picking this means the PTR query has to be performed and to match the return path. Only if there’s a match, there’s allowance.
  • “mx”, picking this means an MX query has to be performed and to match the return path. Only if there’s a match, there’s allowance.
  • “exists”, used for complex queries.
  • “ip4”, checks A records exclusively to verify whether addresses correspond to the domain or not.
  • “ip6”, checks AAAA records exclusively to verify whether addresses correspond to the domain or not.

DNS SPF qualifiers:

  • “+” means PASS. Therefore, messages from the domain should be accepted. 
  • “-” means FAIL. Messages from the domain must be rejected.
  • “~” means SOFT TAIL. Messages from the domain should get a failed tag, but they can be allowed.
  • “?” means NEUTRAL. No policies are involved.

​How to use it to protect your domain reputation?

By enabling SPF, you will stop bad actors from sending e-mails from your domain. 

Your clients won’t receive malicious messages from your domain name, and you will avoid complaints and anger from them.

To prevent dangerous phishing is not minor. To be pointed as malicious, risky, or to be accused of stealing sensitive clients’ data can totally sink your domain’s reputation. 

Ensure that your legit messages successfully reach your clients and providers. 

You can plan the best promotions or punctually order new supplies. But if your messages can’t reach your clients or providers, results won’t be positive. This can happen because your e-mails go directly to the SPAM folder. If there’s no way to verify that your messages are legit, they can be discarded for security. 

Conclusion.

SPF is a great alley to protect your domain reputation. Avoid the risk of losing trustability, clients, or getting banned. Enable SPF!

DNS

Why is it important to use rDNS service?

Did you configure the rDNS zone of your domain properly? Well, if you don’t remember, soon you will know it. Your e-mails will go missing or directly to the SPAM folder. When it’s about configuring your host, it’s not enough to set up only a Forward DNS zone. You need an rDNS zone too. 

From now you have a clue about why it is important to use rDNS service, and it’s not minor! But let’s dig a bit more into the topic.

​​What is rDNS?

The reverse DNS or rDNS is a service that allows the execution of reverse DNS lookups. A forward DNS maps domain names to their corresponding IP addresses. Reverse DNS maps IP addresses to domain names. 

Managed DNS plans usually include rDNS service. If not, providers offer it for you at a cost. What you can do when you have it, it’s to generate a reverse DNS zone. There you will add pointer or PTR records. They are useful to prove the match between the IP addresses and the domain name.

Servers from other enterprises can backtrack the IP address to the domain via the PTR records. This way, they can know everything is legit and be protected from scams. 

​​What is a PTR record?

A pointer or PTR record is a type of DNS record that associates an IP address and the hostname.

Whenever an administrator or a server has to verify if an IP address truly belongs to a specific domain, they execute an rDNS query and look for the PTR records in the reverse DNS zone. In case that the PTR record or records can’t be found, this can provoke an authentication issue and more. For instance, e-mails won’t be delivered correctly, or they will be considered SPAM.

Why is it important to use rDNS service?

  • Basically, if you don’t set up the rDNS, the e-mail servers of people (clients, other companies, your providers, etc.) who want to send you e-mails won’t be able to verify your domain, and you might not be able to send or receive e-mails. Communication is essential for businesses!
  • It will support your reliability for clients as a legit product or service provider.
  • The rDNS service is very important for IP networks owners because they all need to perform reverse lookups. 
  • E-mails for everybody, but especially for businesses, are a professional way to communicate with clients, a way to close deals, or to get opportunities. Not ensuring that messages are correctly sent or received can really mean a loss for you and your pocket. 

Best 3 rDNS providers. 

ClouDNS has suitable choices for all businesses sizes. As a reference, see its rDNS Premium S. costs $2.95 monthly. Moreover, its rDNS service is built on Anycast DNS network, meaning speed and security for you!

Constellix offers you a robust infrastructure and a different payment model. It doesn’t charge a subscription, only what you use (pay-per-usage). 

easyDNS is a reliable provider in the market since 1998. It’s easy to use, and its rDNS is available for $24.95 yearly. 

Top Affordable Premium DNS Hosting providers

Conclusion.

To operate without rDNS is too risky for your business! E-mails that don’t reach their proper destination don’t exist for your clients. Don’t lose! Get a quality rDNS service and prevent problems. Remember that one stitch on time can save you nine later!